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We numerically study the effects of varying electric conductivity and magnetic permeability of the

bounding wall on a kinematic dynamo in a sphere for parameters relevant to Madison plasma

dynamo experiment. The dynamo is excited by a laminar, axisymmetric flow of von K�arm�an type.

The flow is obtained as a solution to the Navier-Stokes equation for an isothermal fluid with a

velocity profile specified at the sphere’s boundary. The properties of the wall are taken into account

as thin-wall boundary conditions imposed on the magnetic field. It is found that an increase in the

permeability of the wall reduces the critical magnetic Reynolds number Rmcr. An increase in the

conductivity of the wall leaves Rmcr unaffected but reduces the dynamo growth rate. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4757219]

Over the past decade, significant effort has been directed

at the experimental demonstration of dynamo action—self-

excitation and maintenance of the magnetic field in a flowing

electrically conducting fluid. A number of experiments with

liquid metals have been constructed to test this phenomenon

in various settings,1–6 and successful observations of dynamo

action have been reported in three of them.4–6 These experi-

ments revealed the critical importance of the magnetic prop-

erties of the flow-driving impellers. Namely, the von

K�arm�an sodium experiment only self-sustained a dynamo

field if the impellers were ferromagnetic.6,7 In addition, the

finite resistivity of the experimental container is expected to

be crucial for the dynamo instability—a situation similar to

the resistive wall mode (RWM) in tokamaks.8 Normally sta-

ble for the perfectly conducting wall, the RWM can become

unstable if the wall has finite resistivity and the instability

develops on the wall’s resistive time scale. These facts initi-

ated more thorough theoretical studies of the effect of the

imposed boundary conditions on the dynamo in experimen-

tally relevant models.9–16 The studies established that there

are no general dependences of dynamo properties on conduc-

tivity and permeability of the boundary; the dependences are

different for different models and flows.

This circumstance motivates us to perform an analogous

study for the Madison plasma dynamo experiment (MPDX,

Fig. 1), currently under construction at the University of

Wisconsin-Madison. The experiment is aimed at investiga-

tions of dynamos excited by controllable flows of plasmas.

Its original design was proposed in Refs. 17 and 18, and con-

ceptual features were successfully tested in the plasma Cou-

ette experiment (PCX).19 The experimental vessel is a sphere

of 3 m in diameter. An axisymmetric multicusp magnetic

field confines the plasma. The field is localized near the

vessel wall and a large volume of unmagnetized plasma

occupies the experiment’s core. An electric field applied

across the multicusp field drives the edge of the plasma azi-

muthally. Arbitrary profiles of azimuthal flow v/ðhÞ can be

imposed at the spherical boundary by modulating the

electric field as a function of polar angle h using discrete

electrodes.

Results of Ref. 18 show that flows generated in such a

way can lead to a dynamo. However, in Ref. 18, insulating

boundaries are assumed, whereas in MPDX, the vessel is

made of aluminum whose conductivity is much higher than

that of the plasma under expected conditions. The goal of

this paper is to consider effects of varying conductivity and

permeability of the vessel on the dynamo.

To describe the plasma, we use dimensionless numbers

M ¼ V0

ffiffiffiffiffi
q0

P0

r
; Re ¼ R0V0

�
; Rm ¼ R0V0

g
; Pm ¼ �

g
;

Mach, fluid Reynolds, magnetic Reynolds, and magnetic

Prandtl, respectively. Here V0 is the peak driving velocity,

q0 and P0 are the average plasma mass density and pressure,

R0 is the radius of the sphere (a unit of length throughout the

paper), � and g are the plasma kinematic viscosity and mag-

netic diffusivity (assumed to be constant and uniform). For

given plasma parameters, these numbers can be estimated

from the Braginskii equations20 (see corresponding formulas

in Refs. 18 and 21). Their expected values for MPDX are

listed in Table I. By varying temperature, density, and ion

species of the plasma, one can change its magnetic Prandtl

number by several orders of magnitude. Such flexibility

makes it possible to demonstrate a dynamo in a laminar flow

by choosing a regime with Pm � 1 and Rm � Re � 102.

Our first step is to find an equilibrium velocity field

capable of dynamo action. For simplicity, we do not focus

on the details of plasma driving near the wall. We neglect

the multicusp magnetic field and applied electric field and

assume that the velocity profile is specified at the boundary.

As shown in Ref. 21 for the model relevant to PCX (cylindri-

cal prototype of MPDX), the velocity structure obtained

under such assumption is the same as that obtained with a

more realistic E� B forcing, except in a thin boundary

layer.
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The velocity field is found using the hydrodynamic part

of the extended MHD code NIMROD22 with an isothermal

fluid model, which in non-dimensional form is

@n

@s
¼ �r � ðnvÞ; (1)

n
@v

@s
¼ �nðv � rÞv�rn

M2
þ 1

Re
r2vþ 1

3
rðr � vÞ

� �
; (2)

where s, n, and v stand for normalized time, density and

velocity, respectively: s ¼ t V0=R0; n ¼ q=q0; v ¼ V=V0.

The differential plasma driving at the boundary is

vjr¼1 ¼ v/ðhÞe/; 0 � h � p; (3)

where v/ðhÞ is a function of polar angle h with physical

restriction v/ð0Þ ¼ v/ðpÞ ¼ 0. In general, it may be

expressed as v/ðhÞ ¼
X

ak sin kh. We use a velocity bound-

ary condition of the von K�arm�an type from Ref. 18, shown

to result in a dynamo. It is given by a2 ¼ �0:4853; a4 ¼
�0:5235; a6 ¼ �0:0467; a8 ¼ 0:1516 (Fig. 2(a)). We take

the Mach number M¼ 1, the fluid Reynolds number

Re¼ 300, and the magnetic Reynolds numbers up to

Rm¼ 400. These parameters can be achieved in MPDX by

creating an argon plasma with V0 ¼ 5 km=s; n0 ¼
1018 m�3; Te ¼ 10 eV, and Ti ¼ 1 eV.

In the NIMROD simulation, we used a meshing of the

poloidal plane with 4608 quadrilateral finite elements of

polynomial degree 2 and 6 Fourier harmonics in the /-direc-

tion (the azimuthal mode numbers are 0 � m � 5). This

resolution was sufficient for the laminar flow under consider-

ation. We took a non-moving fluid (v¼ 0) with uniform den-

sity (n¼ 1) as the initial state and evolved Eqs. (1)–(3) until

a steady state was reached. The resulting velocity field vðr; hÞ
(Fig. 2) is axisymmetric and hydrodynamically stable with

respect to perturbations with m > 0.

The main results of the paper are obtained by solving

the kinematic dynamo problem with this velocity field,

cB ¼ Rmr� ðv� BÞ þ r2B; r � B ¼ 0; (4)

for unknown magnetic field B and normalized dynamo

growth rate c ¼ CR2
0=g. We represent the divergence-free

field as an expansion in a spherical harmonic basis23

B ¼ r�r�
XL

l¼m

SlY
m
l er

" #
þr�

XL

l¼m

TlY
m
l er

" #
; (5)

where SlðrÞ and TlðrÞ are functions of r only and Ym
l are

spherical harmonics related to the associated Legendre

TABLE I. Expected parameters of MPDX.

Quantity Symbol Value Unit

Radius of sphere R0 1.5 m

Wall thickness d 0.05 m

Peak driving velocity V0 0–20 km/s

Average number density n0 1017 � 1019 m�3

Electron temperature Te 2–10 eV

Ion temperature Ti 0.5–4 eV

Ion species H, He, Ne, Ar

Ion mass li 1, 4, 20, 40 amu

Mach M 0–8

Fluid Reynolds Re 0� 105

Magnetic Reynolds Rm 0� 2� 103

Magnetic Prandtl Pm 10�3 � 5� 103

FIG. 2. Axisymmetric equilibrium flow of von K�arm�an type for Mach num-

ber M¼ 1 and fluid Reynolds number Re¼ 300 used in kinematic dynamo

study: (a) velocity boundary condition v/ðhÞ adopted from Ref. 18; (b) struc-

ture of normalized velocity; (c) contour plot of normalized density (dashed

lines denote n < 1). Left half of (b) shows stream lines of poloidal flux nvpol

superimposed on its absolute values depicted in colors; right half of (b)

shows contour plot of azimuthal velocity v/ (dashed lines denote v/ < 0).

Vertical lines in (b) and (c) represent the axis of symmetry.

FIG. 1. Madison plasma dynamo experiment (MPDX): (a) sketch of the

experiment; (b) electrode configuration near the wall for driving plasma ve-

locity v/ðhÞ; (c) model for deriving thin-wall boundary conditions, with r
and l denoting conductivity and relative permeability of the respective

media. (b) is reproduced by permission from Spence et al., Astrophys. J.

700, 470 (2009). Copyright 2009 by AAS.
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polynomials by Ym
l ðh;/Þ ¼ Pm

l ðcos hÞeim/. Since the velocity

is axisymmetric, we consider each azimuthal mode m sepa-

rately. The summation in Eq. (5) is truncated at some L
(L¼ 20 provides a satisfactory convergence in these studies).

Substituting Eq. (5) into Eq. (4) and using the orthogonality

of spherical harmonics, one obtains for m � l � L

cSl ¼
@2Sl

@r2
� lðlþ 1ÞSl

r2
þ Am

l

XL

j¼m

I
ð1Þ
lj Sj� I

ð2Þ
lj

@Sj

@r
þ I
ð3Þ
lj Tj

� �
;

(6)

cTl ¼
@2Tl

@r2
� lðlþ 1ÞTl

r2
� Am

l

XL

j¼m

"
I
ð1Þ
jl Tj

þ @

@r
I
ð2Þ
lj Tj þ I

ð3Þ
lj

@Sj

@r
þ I
ð4Þ
lj Sj

� �
þ I
ð4Þ
jl

@Sj

@r

�
: (7)

Here, the bar above a symbol denotes its complex conjugate,

Am
l is a numerical factor

Am
l ¼ Rm

ð2lþ 1Þðl� mÞ!
2lðlþ 1Þðlþ mÞ!

and I
ð1�4Þ
lj ðrÞ are functions of r given by the integrals

I
ð1Þ
lj ¼

jðjþ 1Þ
r

ðp
0

Ym
j vh

@Ym
l

@h
sin h� imv/Ym

l �dh;

�

I
ð2Þ
lj ¼

ðp
0

vr
@Ym

l

@h

@Ym
j

@h
sin hþ

m2Ym
l Ym

j

sin h

" #
dh;

I
ð3Þ
lj ¼ im

ðp
0

@vr

@h
Ym

l Ym
j dh;

I
ð4Þ
lj ¼

jðjþ 1Þ
r

ðp
0

Ym
j v/

@Ym
l

@h
sin hþ imvhYm

l

� �
dh:

To calculate these integrals, we interpolate the velocity field

on a uniform polar grid (typically with Nr ¼ 50 radial

and Nh ¼ 1000 angle grid points) and use the trapezoidal

rule.

Equations (6) and (7) should be supplemented with

boundary conditions for functions SlðrÞ and TlðrÞ. The regu-

larity of the field at the center of the sphere requires

Sljr¼0 ¼ 0; Tljr¼0 ¼ 0: (8)

The outer boundary conditions depend on the properties

of the shell. To avoid undesired diversion of flow-driving

current into the shell, the inner surface in MPDX is covered

with an insulating coating (Fig. 1(c)). Thus, the normal com-

ponent of current is zero at r¼ 1, i.e.,

Tljr¼1 ¼ 0: (9)

To derive the condition for Sl at r¼ 1, we consider the

model shown in Fig. 1(c) and use the general boundary condi-

tions for normal and tangential components of the magnetic

field at the interface between two media with different relative

magnetic permeabilities l1 and l2: B1n ¼ B2n; B1t=l1 ¼
B2t=l2: We also assume that the insulating coating is thin

enough that it has no impact on profile of Sl. Then the resulting

equations are (omitting “l” in Sl)

r ¼ 1 : S ¼ Sw;
1

l
@S

@r
¼ 1

lw

@Sw

@r
; (10)

1 < r < 1þ d

R0

:
g
gw

cSw ¼
@2Sw

@r2
� lðlþ 1ÞSw

r2
; (11)

r ¼ 1þ d

R0

: Sw ¼ Sv;
1

lw

@Sw

@r
¼ @Sv

@r
; (12)

r > 1þ d

R0

: Sv / r�l; (13)

where Eq. (11) is derived for a stationary wall with thickness

d, symbols with subscripts refer to wall (“w”) and vacuum

(“v”), and symbols without subscript refer to plasma. We

assume that the variations of Sl in the wall are small. This is

the thin-wall approximation,14 it applies if d � R0 and

d � jgw=Cj1=2
. Then Eqs. (10)–(13) are reduced to

@Sl

@r
ð1þ lclÞ þ Sl ðllþ ccrÞ

� �����
r¼1

¼ 0; (14)

where we have used the relation g ¼ c2=ð4prlÞ between

magnetic diffusivity g and electric conductivity r (c is the

FIG. 3. Dependence of dynamo growth rate c on magnetic Reynolds number

Rm for different values of the wall parameters cr and cl. Calculations for

cr ¼ 0 are performed with two resolutions: L¼ 20, Nr ¼ 50 (solid line) and

L¼ 30, Nr ¼ 100 (dotted line, almost overlapping with solid one). The cases

with cr ¼ 1 (dashed line) and cr ¼ 10 (dashed-dotted line) are done with

L¼ 20, Nr ¼ 50.
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speed of light) and introduced the wall conductivity parame-

ter cr¼rwd/(rR0) and the wall permeability parameter

cl¼ lwd/R0. Equation (14) is obtained for a stationary wall

without requiring the no-slip boundary condition for plasma

velocity, in contrast to analogous equation (14) from Ref. 14.

Equations (6)–(9) and (14) constitute an eigenvalue

problem for the dynamo growth rate c and unknown eigen-

functions Sl and Tl. In order to solve it, we apply the finite

difference method and discretize Sl and Tl for each harmonic

l (m � l � L) on a uniform grid at 0 � r � 1 with Nr equal

intervals. The resulting system is cast in the form of a matrix

eigenvalue equation, which is solved in MATLAB. The devel-

oped scheme has been benchmarked against the results of

the kinematic dynamo studies from Refs. 24–26 (see Ref. 27

for details).

Here, we report the results of solving the kinematic

dynamo eigenvalue problem with the velocity shown in

Fig. 2, relative permeability of the plasma l ¼ 1, magnetic

Reynolds numbers Rm¼ 0–400, and varying wall parameters

cr and cl. We consider only the most unstable (or least

decaying) m¼ 1 azimuthal mode. The results are summarized

in Figs. 3 and 4. In the present case, c is always real, so the

dynamo threshold Rmcr corresponds to the condition c ¼ 0.

Rmcr does not depend on the wall conductivity parameter cr.

This is because cr drops out of the problem when c ¼ 0, as

follows from Eq. (14). However, cr affects the dynamo

growth rate: larger values of cr (larger wall conductivity)

lead to lower jcj. In the limit of a perfectly conducting shell,

no growing field is possible, since c! 0.

The wall permeability parameter cl has a strong influ-

ence on both dynamo threshold Rmcr and growth rate c. A

ferritic wall facilitates dynamo action. As shown in Fig. 4,

Rmcr decreases with increase of cl: from Rmcr 	 242 when

cl ¼ 0 to Rmcr 	 154 when cl !1. These results are con-

sistent with previous theoretical dynamo studies in other

geometries,9,10,12,13 which indicated reduction of Rmcr for

the ferritic-wall boundary conditions.

Estimates for typical parameters of MPDX show that its

wall is very conducting and non-ferritic with cr 	 30 and

cl 	 0. Under these conditions, dynamo action is achievable

for the considered flow if Rm � 242, the respective dynamo

growth rate at Rm¼ 400 is C 	 3:6 s�1.

In summary, we have studied the influence of finite con-

ductivity and permeability of the wall on a plasma dynamo,

generated in a sphere by a compressible laminar flow of von

K�arm�an type. Our results show that in such flow the dynamo

threshold is affected only by the wall permeability, while the

dynamo growth rate depends on both wall properties.

The authors wish to thank C. Sovinec for valuable help

and discussions related to NIMROD.
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